829 research outputs found

    Exploring a syntactic notion of modal many-valued logics

    Get PDF
    We propose a general semantic notion of modal many-valued logic. Then, we explore the di culties to characterize this notion in a syntactic way and analyze the existing literature with respect to this frameworkPeer Reviewe

    A note on drastic product logic

    Full text link
    The drastic product D*_D is known to be the smallest tt-norm, since xDy=0x *_D y = 0 whenever x,y<1x, y < 1. This tt-norm is not left-continuous, and hence it does not admit a residuum. So, there are no drastic product tt-norm based many-valued logics, in the sense of [EG01]. However, if we renounce standard completeness, we can study the logic whose semantics is provided by those MTL chains whose monoidal operation is the drastic product. This logic is called S3MTL{\rm S}_{3}{\rm MTL} in [NOG06]. In this note we justify the study of this logic, which we rechristen DP (for drastic product), by means of some interesting properties relating DP and its algebraic semantics to a weakened law of excluded middle, to the Δ\Delta projection operator and to discriminator varieties. We shall show that the category of finite DP-algebras is dually equivalent to a category whose objects are multisets of finite chains. This duality allows us to classify all axiomatic extensions of DP, and to compute the free finitely generated DP-algebras.Comment: 11 pages, 3 figure

    Fitting in a complex chi^2 landscape using an optimized hypersurface sampling

    Full text link
    Fitting a data set with a parametrized model can be seen geometrically as finding the global minimum of the chi^2 hypersurface, depending on a set of parameters {P_i}. This is usually done using the Levenberg-Marquardt algorithm. The main drawback of this algorithm is that despite of its fast convergence, it can get stuck if the parameters are not initialized close to the final solution. We propose a modification of the Metropolis algorithm introducing a parameter step tuning that optimizes the sampling of parameter space. The ability of the parameter tuning algorithm together with simulated annealing to find the global chi^2 hypersurface minimum, jumping across chi^2{P_i} barriers when necessary, is demonstrated with synthetic functions and with real data

    Optimal Uncertainty Quantification

    Get PDF
    We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call \emph{Optimal Uncertainty Quantification} (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions they have finite-dimensional reductions. As an application, we develop \emph{Optimal Concentration Inequalities} (OCI) of Hoeffding and McDiarmid type. Surprisingly, these results show that uncertainties in input parameters, which propagate to output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the transfer functions (or probability distributions) are imperfectly known. We show how, for hierarchical structures, this phenomenon may lead to the non-propagation of uncertainties or information across scales. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the seismic safety assessment of truss structures, suggesting the feasibility of the framework for important complex systems. The introduction of this paper provides both an overview of the paper and a self-contained mini-tutorial about basic concepts and issues of UQ.Comment: 90 pages. Accepted for publication in SIAM Review (Expository Research Papers). See SIAM Review for higher quality figure

    Visualizing convolutional neural networks to improve decision support for skin lesion classification

    Get PDF
    Because of their state-of-the-art performance in computer vision, CNNs are becoming increasingly popular in a variety of fields, including medicine. However, as neural networks are black box function approximators, it is difficult, if not impossible, for a medical expert to reason about their output. This could potentially result in the expert distrusting the network when he or she does not agree with its output. In such a case, explaining why the CNN makes a certain decision becomes valuable information. In this paper, we try to open the black box of the CNN by inspecting and visualizing the learned feature maps, in the field of dermatology. We show that, to some extent, CNNs focus on features similar to those used by dermatologists to make a diagnosis. However, more research is required for fully explaining their output.Comment: 8 pages, 6 figures, Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 201

    Phases of collaborative mathematical problem solving and joint attention : a case study utilizing mobile gaze tracking

    Get PDF
    Given the recent development of mobile gaze-tracking devices it has become possible to view and interpret what the student sees and unravel the associated problem-solving processes further. It has also become possible to pinpoint joint attention occurrences that are fundamental for learning. In this study, we examined joint attention in collaborative mathematical problem solving. We studied the thought processes of four 15-16-year-old students in their regular classroom, using mobile gaze tracking, video and audio recordings, and smartpens. The four students worked as a group to find the shortest path to connect the vertices of a square. Combining information on the student gaze targets with a qualitative interpretation of the context, we identified the occurrences of joint attention, out of which 49 were joint visual attention occurrences and 28 were attention to different representations of the same mathematical idea. We call this joint representational attention. We discovered that 'verifying' (43%) and 'watching and listening' (35%) were the most common phases during joint attention. The most frequently occurring problem solving phases right after joint attention were also 'verifying' (47%) and 'watching and listening' (34%). We detected phase cycles commonly found in individual problem-solving processes ('planning and exploring', 'implementing', and 'verifying') outside of joint attention. We also detected phase shifts between 'verifying', 'watching and listening', and 'understanding' a problem, often occurring during joint attention. Therefore, these phases can be seen as a signal of successful interaction and the promotion of collaboration.Peer reviewe

    Advancing video research methodology to capture the processes of social interaction and multimodality

    Get PDF
    In this reflective methodological paper we focus on affordances and challenges of video data. We compare and analyze two research settings that use the latest video technology to capture classroom interactions in mathematics education, namely, The Social Unit of Learning (SUL) project of the University of Melbourne and the MathTrack project of the University of Helsinki. While using these two settings as examples, we have structured our reflections around themes pertinent to video research in general, namely, research methods, data management, and research ethics. SUL and MathTrack share an understanding of mathematics learning as social multimodal practice, and provide possibilities for zooming into the situational micro interactions that construct collaborative problem-solving learning. Both settings provide rich data for in-depth analyses of peer interactions and learning processes. The settings share special needs for technical support and data management, as well as attention to ethical aspects from the perspective of the participants' security and discretion. SUL data are especially suitable for investigating interactions on a broad scope, addressing how multiple interactional processes intertwine. MathTrack, on the other hand, enables exploration of participants' visual attention in detail and its role in learning. Both settings could provide tools for teachers' professional development by showing them aspects of classroom interactions that would otherwise remain hidden.Peer reviewe

    Normative Multi-Agent Programs and Their Logics

    Get PDF
    Multi-agent systems are viewed as consisting of individual agents whose behaviors are regulated by an organization artefact. This paper presents a simplified version of a programming language that is designed to implement norm-based artefacts. Such artefacts are specified in terms of norms being enforced by monitoring, regimenting and sanctioning mechanisms. The syntax and operational semantics of the programming language are introduced and discussed. A logic is presented that can be used to specify and verify properties of programs developed in this language
    corecore